
104

historical traffic data with a limited increase in computational time
and memory, and (b) utilize Google Maps open-source application
programming interface (API) and network data to produce distance
and travel time matrices. To the authors’ knowledge, no research
effort has integrated time-dependent routing algorithms, historical
traffic data, real-world road network data, and public open-source
APIs to incorporate the impact of congestion on delivery routes.

LITERATURE REVIEW

This section covers two main areas of research: (a) the effects of
congestion and travel time variability on vehicle routes and logistics
operations and (b) TDVRP solution algorithms and their application
to urban areas.

Direct and indirect costs of congestion on passenger travel time,
shipper travel time and market access, production, and labor produc-
tivity have been widely studied and reported in the literature. The
work of Weisbrod et al. provides a comprehensive review of this lit-
erature (1). Substantial progress has been made in the development
of econometric techniques to study the joint behavior of carriers and
shippers relative to congestion (2, 3).

Survey results suggest that the type of freight operation has a sig-
nificant influence on how congestion affects carriers’ operations and
costs. Survey data from California indicate that congestion is per-
ceived as a serious problem for companies specializing in LTL, refrig-
erated, and intermodal cargo (4). Similar conclusions are reached by
reports analyzing the effects of highway limitations and traffic con-
gestion in the Portland, Oregon, region (5, 6). Golob and Regan iden-
tified a positive relationship between the level of local congestion and
the purchase of routing software (7). Carriers that do not follow reg-
ular routes, such as for-hire carriers, tend to place a higher value on
the use of real-time information to mitigate the effects of congestion
and logistical services to plan fleet deployments (8). Other researchers
attribute the scant usage of TDVRP algorithms to the lack of reliable
time-dependent travel time data, which can be particularly expensive
or difficult for small carriers to obtain (9). These authors recommend
the implementation of open-access online TDVRP and data services
to increase the efficiency of routes in congested urban areas.

Another line of research investigated carrier reactions to toll mea-
sures intended to shift freight traffic to off-peak hours. Holguin-Veras
et al. investigated the effects of congestion charges in New York City
and found that delivery times are heavily dictated by customer time
windows (10). Congestion charges increase carriers’ operating costs
while inducing little shifting of deliveries from peak to off-peak hours.
This suggests an inelastic relationship between freight congestion
charges and routes with time-definite delivery times. Quak and Koster
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Urban congestion presents considerable challenges to time-definite trans-
portation service providers. Package, courier, and less than truckload
operations and costs are severely affected by growing congestion levels.
With congestion increasing at peak morning and afternoon periods, pub-
lic policies and logistics strategies that avoid or minimize deliveries dur-
ing congested periods have become crucial for many operators and public
agencies. However, in many cases these strategies or policies can intro-
duce unintended side effects, such as higher labor costs, shorter working
hours, and tighter customer time windows. Research efforts to analyze
and quantify the impact of congestion are hindered by the complexities of
vehicle routing problems with time-dependent travel times and the lack
of networkwide congestion data. Research used real-world road network
data to estimate travel distance and time matrices, land use and customer
data to localize and characterize demand patterns, congestion data from
an extensive archive of freeway and arterial street traffic sensor data to
estimate time-dependent travel times, and an efficient time-dependent
vehicle routing (TDVRP) solution method to design routes. Novel algo-
rithms were developed to integrate real-world road network and travel
data to TDVRP solution methods. Results show the impact of congestion
on depot location, fleet size, and distance traveled.

Congested urban areas present considerable challenges for less-than-
truckload (LTL) carriers, courier services, and industries that require
frequent and time-sensitive deliveries. With congestion increasing at
peak morning and afternoon periods, public policies and logistics
strategies that avoid or minimize deliveries during congested periods
have become crucial for many operators and public agencies. How-
ever, in many cases, these strategies and policies can introduce
unintended side effects, such as higher labor costs, shorter working
hours, and tighter customer time windows.

Although current research on vehicle routing algorithms is exten-
sive, much less attention has been given to investigation of the impact
of congestion on carrier operations. Furthermore, most algorithms
for solving the time-dependent vehicle routing problem (TDVRP)
found in the existing literature do not deal with the estimation of
distance and time-dependent travel time matrices. Thus, this research
focuses on two primary objectives: (a) develop efficient algorithms
to apply TDVRP solution methods to actual road networks by using
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presented a methodology to quantify the impact of delivery con-
straints and urban policies by using a fractional factorial regression
(11). They found that vehicle restrictions and delivery curfews have
a compounding effect on customer costs, whereas vehicle restrictions
alone are costlier only when vehicle capacity is limited. There is little
research into the effects of congestion on vehicle route characteristics.
Figliozzi analytically modeled routes (12), extending Daganzo’s con-
tinuous approximations (13), and analyzed how routing constraints
and customer service durations affect route characteristics by using
a classification based on supply-chain characteristics. This analysis
showed that a decrease in travel speed severely affects total distance
traveled for routes with time window constraints, whereas capacity
constrained routes are less affected. The impact of travel time reliabil-
ity on LTL delivery was also analyzed by using continuous approxi-
mations and real-world data (14). This research concludes that travel
time variability has a significant impact on carrier costs when average
distance to delivery areas increases and average travel speed decreases.

Classic versions of the vehicle routing problem (VRP) such as
the capacitated VRP or VRP with time windows (VRPTW) have been
widely studied. However, time-dependent problems have received
considerably less attention. Figliozzi presented a comprehensive
review of TDVRP approaches and an efficient TDVRP algorithm
(15); that work also creates benchmark problems for the TDVRP
altering the classical VRPTW Solomon instances. Fleischmann et al.
reviewed the adaptation of the VRP algorithms to time-dependent
data from traffic information systems in the city of Berlin (16). Eglese
et al. analyzed the construction of a time-dependent travel time data-
base (17 ) by using Dijkstra’s algorithm for time-dependent links.
Eglese et al. applied their methodology to a real-world network in
England. However, these research efforts do not incorporate into their
analyses the influence of time windows and recurring bottlenecks or
the impact of congestion on fleet size and total distance traveled.

PORTLAND, OREGON, CASE STUDY

Considered a gateway to international sea and air freight transport, the
city of Portland, Oregon, has established itself as an important hub for
international and domestic freight movements. Its favorable geogra-
phy for both international ocean and domestic river freight via the
Columbia River is complemented by its highway connections. I-5 is
the most important freeway connecting the West Coast from Mexico
to Canada as well as southern California ports and main West Coast
population centers (5). The I-5 freeway is also used by many carriers
delivering in Portland and the city’s surrounding suburbs because
it provides the main north–south freight corridor through the city
of Portland.

Recent increases in regional traffic congestion have negatively
affected freight operations. A recent report investigated the effects of
congestion on Portland-area businesses and LTL deliveries (5). That
report provides insightful yet qualitative information on various strate-
gies used by businesses to cope with congestion, additional delivery
costs, and uncertainty. The report indicates that congestion has made
some afternoon deliveries infeasible, which requires that deliveries be
made during nonbusiness hours early in the morning. However, avoid-
ing congesting by shifting deliveries to early morning generates addi-
tional costs by reducing route durations. In some cases, early deliveries
are not feasible near residential areas where parking problems and
noise can lead to sound or traffic ordinance violations and conflicts
with residents (5).

The recurrent effects of traffic congestion at peak periods present
daily challenges to LTL carriers in the Portland metropolitan area,

Conrad and Figliozzi 105

represented by a numerical analysis presented in a later section.
Customer data and depot locations are generated by using a land use
zoning map of the Portland metropolitan area. Network and conges-
tion data sources, including recurrent bottlenecks, are described, as is
a methodology for applying TDVRP algorithms to real-world net-
works. The methodologies and algorithms developed in this research
assume that customers’ demands and time windows are known a pri-
ori, for example, the night before delivery. Congestion data related
to nonrecurrent conditions, such as due to accidents, is not analyzed
and is left as a future research topic.

DATA SOURCES

Two main data sources were used in this research: Google Maps
API for implementation of the TDVRP algorithm and the Portland
Transportation Archived Listing (PORTAL) for obtaining historical
travel time data.

Overview of Google Maps API

The Google Maps API allows access to the up-to-date street network
in the studied region with a high level of geographical detail. The
open-source application allows for considerable freedom in modify-
ing the program and user interface (18). Figure 1 shows the process
of creating customer distributions and obtaining optimized routes
from the TDVRP algorithm as implemented with the API. The API
consists of several interfaces:

• A customer selection screen where a set of customers and a
single depot can be created by clicking on locations on the map. A
coordinate output is provided that is then copied into a text (.txt) file.

• An interface that calculates the shortest paths between pairs
of customers and constructs the distance and travel time origin–
destination matrices. Distance and travel time matrices are estimated
and stored as text files.

• Travel speed, occupancy and vehicle flow data from traffic
sensors used to incorporate the impact of congestion on travel
times.

• A solution interface where solution sets output from the TDVRP
algorithm can be loaded and plotted to provide a visual verification of
results.

Perhaps the greatest advantage of the API is that the open-source
software and high-quality network data can be accessed free of
charge from http://code.google.com/apis/maps. This together with
the TDVRP solution algorithm developed to interface with the API
offers very-low-cost solutions for route planning and optimization
while allowing access to detailed and accurate network data such as
road hierarchy and restrictions (e.g., one-way streets or no-left-turn
movements at intersections). The effects of congestion are included
by modifying the travel times initially calculated by Google Maps.
After the TDVRP algorithm design the routes, the API interface can
be used to obtain detailed driving directions.

Simulating Congestion Effects

Google Maps provides reasonable travel time estimations during
uncongested periods. However, to increase the accuracy of travel time
estimations, highway sensor data are used. For example, segments
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FIGURE 1 Overview of TDVRP solution methodology and integration of Google Maps API.
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Data obtained from PORTAL are also used to model the impact
of traffic queuing on the surrounding network. The areas of reduced
travel speed for each bottleneck location are assumed as a function
of the measured occupancy and vehicle inflow and outflow rates
at each bottleneck location. Research has shown that traffic queues
often begin to form at occupancies approximately equal to or greater
than 20% (20), but according to speed flow data, queues may form
at occupancies as low as 13%. From these queuing concepts and
assumptions, the radius of the area of travel speed reduction around
each bottleneck where vehicle travel speed reduced is varied in pro-
portion to the difference in the inflow and outflow rates multiplied by
average vehicle spacing when the occupancy is above a certain thresh-
old value. Strictly, this assumes that there is conservation of vehicles
(i.e., no vehicles enter or exit the road segment in question) and
ignores the presence of moving traffic queues.

The travel speeds used in this research are calculated from 15-min
archived travel time data averaged for the year 2007 along the I-5 free-
way corridor from the Portland suburb of Wilsonville to Vancouver,
Washington. These data are sufficient to demonstrate the proposed
methodology, but consideration of seasonal or monthly variability in
travel time is important for many LTL carriers and is feasible via
PORTAL. In this research, it is assumed that carriers account for only
recurrent congestion and plan their routes the night before making the
deliveries.

METHODOLOGY

TDVRP Algorithm Overview

Figliozzi presented a description of the TDVRP algorithm used in this
experiment, along with a full TDVRP formulation (15). Because of
hard time window constraints, the primary objective is the minimiza-
tion of the number of vehicles or routes; the secondary objective is
minimization of the travel time or distance. The TDVRP solution algo-
rithm consists of a route construction phase and a route improvement
phase, each using two separate algorithms (Figure 3). During route
construction, the auxiliary routing algorithm Hr determines feasible
routes with the construction algorithm Hc assigning customers and
sequencing the routes. Route improvement is done first with the
route improvement algorithm Hi, which compares similar routes and

FIGURE 2 Example with bottleneck locations and areas 
of effective travel speed reduction.
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FIGURE 3 TDVRP solution method.

along I-5 near traffic bottlenecks are selected to represent areas of
decreased travel speed. The selected segments are between free-
way interchanges or on and off ramps where vehicle detector loops
are located.

Detailed traffic data are obtained from PORTAL, Portland’s imple-
mentation of an archived data user service, which coordinates and
obtains data from approximately 436 inductive loop detectors along
Interstate freeways in the Portland metropolitan area. Bertini et al.
give a description of this transportation data archive (19). Bottlenecks
are modeled as point locations surrounded by areas of reduced travel
speed. Travel in proximity to a bottleneck is expressed as a percent
reduction in travel speed proportional to the speed reduction at the
bottleneck location. Figure 2 shows the bottleneck locations and
areas of effective travel speed reduction.



consolidates customers into a set of improved routes. The service
time improvement algorithm Hy eliminates early time window
violations and then reduces the route duration without introduc-
ing additional early or late time window violations; these tasks are
accomplished by using the arrival time and departure time algo-
rithms Hyf and Hyb, respectively, and customers are subsequently
resequenced as necessary. It is with these algorithms that the POR-
TAL data and shortest-path travel speeds generated by the Google
Maps API are inserted into the solution algorithm.

Notation

For the following travel time algorithms, the total depot working time
[e#, l#] is partitioned into a set of p time periods Tp = {T1, T2, . . . , Tp}.
Each traffic bottleneck location βm ∈ βn = {β1, β2, . . . , βn} is assigned
the following data at each time partition Tk ∈ Tp:

Op
n = [Okm]p×n, table of occupancy values for each time period

Tk ∈ Tp and bottleneck βm ∈ βn;
Up

n�1 = [Ukm]p×n+1, table of vehicle flow inflow and outflow rates
for each time period and bottleneck location; the inflow
and outflow rates at time period Tk for bottleneck βm are
Ukm and Uk,m+1, respectively; and

vp
n = [vkm]p×n, table of congested travel speeds obtained from

PORTAL.

All data are collected from PORTAL, and the point source location
of each traffic bottleneck is assumed to be midway between detector
loops. The algorithms include the following adjustable parameters for
each bottleneck location:
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R
_

m ∈ R
_

n = {R
_

1, R
_

2, . . . , R
_

m, . . . , R
_

n}; set of initial radius values
at time t = 0;

L
_

m ∈ L
_

n = {L
_

1, L
_

2, . . . , L
_

m, . . . , L
_

n}; set of average vehicle
spacing values;

O
_

m ∈ O
_

n = {O
_

1, O
_

2, . . . , O
_

m, . . . , O
_

n}; set of threshold occupancy
percentages that determine the expected onset of
traffic queuing; and

v
_

m ∈ v
_

n = {v
_

1, v
_

2, . . . , v
_

m, . . . , v
_

n}; set of free-flow speeds.

Table 1 contains a complete listing of variable and function
definitions.

Traffic Queuing Algorithm

The following is a summary of the Hyc algorithm that assembles a table
of bottleneck radii Rkm for each bottleneck βm and time period Tk.
The algorithm requires the input data arrays Op

n and Up
n�1 as well as the

adjustable parameters R
_

n, L
_

n, and O
_

n. The output table Rp
n contains

the radius value for each time period Tk at each bottleneck βm in a
p × n array. Beginning with the conditional statement within the
nested for loop for a particular βm and starting at t = 0, the algorithm
can be described as follows:

1. First assign the variable R the base parameter value R
_

m at t = 0.
2. Begin the k iteration; if the occupancy Okm at a given k iter-

ation is greater than the threshold value O
_

m, add the differences in
the outflow and inflow traffic volumes multiplied by the duration
of the time partition tk

_ − tk by the average vehicle spacing L
_

m to
the variable R.

TABLE 1 Notation

Definition

Variables

i, j, m

βi = (xi, yi); βj = (xj, yj); βm = (xm, ym)

aj

bi

ei

gi

d

dij

tij

uij =

Array and Vector Quantities

Tk ≡ [tk, tk] ∈ Tp = {T1, T2, . . . , Tp},
–
Rm ∈–

Rn = {
–
R1,

–
R2, . . . , 

–
Rn}

–
Lm ∈––

Ln = {
–
L1,

–
L2, . . . , 

–
Ln}

–
Om ∈ –

On = {
–
O1,

–
O2, . . . ,  

–
On}

–
vm ∈ –

vn = {
–
v1, 

–
v2, . . . , 

–
vn]

Ukm, Uk,m+1 ∈Up
n+1 = [Ukm]p×n+1

Op
n = [Okm]p×n

vp
n = [vkm]p×n

Function

f(xµ, xv, yµ, yv)

d

t
ij

ij

Indices for set of consecutive customers (i, j) and bottlenecks (m)

Geographic coordinates of customer i, customer j and bottleneck m, respectively

Arrival time at customer j

Departure time from customer i

Lower time window for customer i

Service time at customer i

Iterated driving distance variable

Driving distance between customers i and j calculated by the Google Maps API

Free-flow travel time between customers i and j calculated by the Google Maps API

Free-flow speed used in TDVRP algorithm

Set of time periods as fraction of depot working time

Set of initial radius values at each bottleneck location at time t = 0

Set of average vehicle spacing values for each bottleneck location

Set of threshold occupancy percentages that determine the expected onset of traffic queuing

Bottleneck speed parameters

Table of vehicle flow inflow and outflow rates for each time period and bottleneck

Table of occupancy values for each time period and bottleneck

Speed at bottleneck Bm for the kth time period entered as a p × n array

Euclidean distance between two sets of x and y coordinates



3. If the occupancy Okm is less than O
_

m and the radius variable R
is greater than the base parameter R

_
m, then subtract the quantity from

Step 2 from R.
4. Take the maximum of the set [R, R

_
m]; this and the second con-

dition of Step 3 prevent R from being assigned a negative value and
ensure that R

_
m is a lower bound for the variable R when the predicted

traffic queue is dispersing.
5. Otherwise, retain R = R

_
m.

6. Construct a column vector Rp of R values obtained from each
k iteration.

7. Repeat Steps 1 through 6 n times and construct the output
matrix Rp

n from the column vectors Rp obtained from each iteration.

The Hyr algorithm adds or subtracts expected lengths of traffic
queues to the radius of the effective area of each bottleneck that is
dependent on whether the measured occupancy is above or below
each threshold value contained in O

_
n. The table of values in Rp

n is
referenced by the Hyf and Hyb algorithms described in detail in the
following section. The objective is to extrapolate travel time trends
from the data that are available and apply them to the surrounding
road network.

Arrival and Departure Time Algorithms

The following is a summary of the arrival time and departure time
algorithms Hyf and Hyb adapted from Figliozzi (15) that estimate
travel times between pairs of customers βi and βj by using the travel
time data. The Hyf algorithm calculates the expected arrival time at
a customer βj when departing from a previous customer βi by using
a forward-iterative process. Similarly, the Hyb algorithm uses a back-
ward iterative process and simultaneously calculates the required
departure time from customer βi to reach customer βj.

The impact of bottlenecks as vehicles are moving through different
periods is a function of the estimated distance between the vehicle and
the bottleneck at the beginning of each time period. A linear approx-
imation of the vehicle location is used to reduce computational
complexity because shortest-path and Euclidean distances are highly
correlated. High levels of correlation between Euclidian and shortest-
path distances are usually found in urban areas (21). The distance trav-
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eled along the Euclidean connecting line is calculated as a percentage
of the actual route traversed such that

where

Dij = Euclidean distance between customers i and j, 
dij = shortest-path driving distance from customer i to customer j

calculated by the API, and
d = iterated distance from i to j along the actual driving route (a

derivation of this function is given in the appendix).

With the law of cosines (see Figure 4), the distance from a point
on the Euclidian connecting line to each bottleneck at a given time
iteration in the forward iterative calculation can be shown to be

where Dim and Djm are Euclidean distances between customer i and
bottleneck βm and customer j and bottleneck βm, respectively.

Similarly, for the backward iterative process of the departure time
algorithm, the distance from the nearest bottleneck is

The travel speed function sm is applied at each time iteration Tk and
calculates a speed value for each bottleneck. This function calculates
congested travel speeds sm as reductions in the API-derived speed uij

proportional to the speed reduction measured at the traffic bottlenecks
such that sm/uij = vkm/v

_
m if the virtual location on the Euclidean connect-

ing line is within the radius Rkm. Here vkm is the time-varying speed
obtained from PORTAL, and v

_
m is an adjustable parameter that may

represent the freeway free-flow speed. In other words, the reduction in
travel speed due to congestion in the surrounding network is assumed
to be proportional to the reduction observed from the PORTAL
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freeway data at the bottleneck (detector station) with the slowest travel
speed. This function can be expressed as

where rm is the distance from a point along the Euclidean connecting
line to a bottleneck βm.

The following is a summary of the Hyf algorithm pseudocode:

1. First determine if the arrival time ai is less than the lower time
window ei at customer i

– If so, then the vehicle waits and the expected departure time
is ei plus the service time gi.

– If not, then the departure time is simply the arrival time plus
the service time
2. Determine k for the discrete time period Tk with bounds [tk–

, tk
_]

that the expected departure time bi lies in. This is the initial value for
the iterator in the while loop.

3. Determine the Euclidean distance of each traffic bottleneck to
the location βi = (xi, yi) of customer i; the speed function is calculated
for each value m and a row vector Sn of speeds is assembled. The ini-
tial travel speed of the vehicle in the subsequent forward-iterative
process is calculated as the minimum value of Sn, that is, the travel
speed is only as fast as that imposed by the bottleneck with the worst
travel speed (only among the subset of bottlenecks whose area of
influence affects the path between customers at a given time).

4. Terminate the while loop when the vehicle has reached its des-
tination. In each period, speeds are recalculated and distances accu-
mulated until the vehicle has reached its destination. Output: the
expected arrival time aj at customer j when departing from customer
i at time bi.

The Hyb algorithm works in a similar fashion: given a customer j at
location vj with an expected arrival time aj obtained from the Hyf algo-
rithm, determine the required departure time bi from customer i at
location βi to make the trip between βi and βj without allowing for late
time window violations.

Calibration

Travel times can be calibrated by adjusting R
_

n, L
_

n, O
_

n, v
_

n parameters
as well as the time-dependent travel speeds provided by PORTAL

s
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(vp
n). Directional and time-of-day effects can be incorporated. Mem-

ory requirements are reduced because the algorithms work with one
travel time and distance matrix. Simple linear functions and intuitive
parameters are used to adapt free-flow travel times to congested
conditions.

EXPERIMENTAL SETTING

To test the model with real-world constraints, two delivery periods
are modeled and analyzed: (a) an early morning delivery period that
avoids most of the morning peak hour traffic congestion but with
tighter time windows, and (b) an extended morning delivery time that
increases the feasible working time but with increased travel during
the morning peak. Figure 5 provides a qualitative comparison of the
simulated delivery times.

A total of 50 customer locations are used (Figure 6) with constraints
assigned according to the zoning criteria. All customers normally
served after 9:00 a.m. are assumed to be able to shift delivery times
before this hour. Time windows of 15 min are randomly assigned to
all customer types. Additionally, deliveries to all customers in mixed-
use and residential areas are prohibited before 7:00 a.m. to model
required compliance with local noise ordinances. In the early-morning
delivery option, this reduces the effective depot working time to
just 2 h for these customers. The extended morning delivery option
provides a 4-h working time for these customers but includes the
effects of the morning peak-hour congestion to a greater degree. The
calibration of the model was tested by varying the travel speed param-
eters v

_
n to alter the simulated travel speed derived from the PORTAL

travel time data and contained in the travel speed table vp
n.

EXPERIMENTAL RESULTS

Results comparing the number of vehicles and total distance trav-
eled during the morning and extended morning delivery periods are
presented in this section. In addition, to incorporate the impact of
travel time reliability, time-varying travel speeds from PORTAL are
decreased by a coefficient δ. This adjustment maintains the overall
trend in travel speed variation throughout the delivery period but
allows for adjustments to the travel time to more accurately reflect
real-world differences between average travel speeds and the actual
distribution of travel speeds. A value δ = 1 utilizes average time-
varying travel speed PORTAL data and assumes that no hard time-
window violations take place if realized travel times are at least
the average travel speed. However, if the carriers would like to

Constrained 
Customers  in  
(Residential areas)

Early Morning Delivery Extended Early Morning Delivery

03:00 07:00 09:0005:00

Congestion intensifies

03:00 07:00 09:00 11:00

15 min. time
windows

15 min. time
windows

FIGURE 5 Modeled delivery periods, constrained customers, and time window constraints.



account for travel time unreliability, a value of δ < 1 can be used in
the calculations as follows:

A value of δ < 1 guarantees a higher value of customer service (14).
The sensitivity to travel time unreliability and buffer times was tested
by setting the parameter δ = {0.4, 0.6, 0.8, 1}.

Impact of Congestion on Number of Vehicles

For the number of required vehicles (Figure 7), the central depot
showed less sensitivity to changes in travel time reliability than did
the suburban depot. As expected (14), reduced travel speed appears
to have a greater impact on fleet size when the depot has a suburban
location. The number of vehicles required is consistently less for the
extended early-morning delivery period, and a larger fleet is still
required when the depot has a suburban location.

Impact of Congestion on Total Distance Traveled

Figure 8 compares total vehicle miles traveled (VMT). Similar to the
required number of vehicles, total VMT is significantly higher for
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tours originating at the suburban depot location. Constrained ser-
vice times for customers in the early-morning delivery period also
appear to affect total VMT to a slightly greater extent than does
travel speed.

CONCLUSIONS

This research proposed a new methodology for integrating real-world
road networks and travel data to time-dependent vehicle routing
methods. The use of traffic sensor data and Google Maps API pro-
vides a unique approach to interface routing algorithms, travel time,
and congestion data. Intuitive algorithms and parameters are used
to incorporate the effects of congestion on time-dependent travel
time matrices. The proposed methodology is a significant improve-
ment for representing the impact of congestion in congested urban
areas leveraging on existing open-source data and applications.

The results show the dramatic effects of congestion on carrier fleet
sizes and distance traveled. The results also suggest that congestion
has a significant impact on fleet size, particularly for depots located
in suburban areas outside the customer service area.

APPENDIX A

The following is the derivation of the bottleneck distance function r
for the forward-iterative calculation in the arrival time algorithm.
An identical argument with the distance d iterated in the backward

Central
Depot

Customers with service
time constraints

Central
Depot

Suburban
Depot

FIGURE 6 Customer service area and depot locations.
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FIGURE 7 Effects of congestion on fleet size: (a) central depot and 
(b) suburban depot.
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direction from a customer j to i obtains the bottleneck distance
function for the departure time algorithm in a trivial manner.

Let θim be the angle opposite Dim, the Euclidean distance from
customer i to bottleneck Bm. With the law of cosines, D2

im = D2
ij +

D2
jm − 2DijDjmcos(θim),

θim is also the angle opposite to r. Equating r and Equation A-1, and
with the law of cosines again,
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